B. Math. III – Back Paper Examination Introduction to Differential Geometry January 2015

Instructions: All questions carry equal marks. The 'dot' on top of a function denotes its derivative.

- 1. Let $\gamma(t)$ be a unit speed curve in \mathbb{R}^3 . Define the tangent, principal normal and binormal at a point on its trajectory. Derive the Frenet-Serret equations for γ , clearly explaining all the terms involved in the formulae.
- 2. (Wirtinger's Inequality) Let $F:[0,\pi]\to\mathbb{R}$ be a smooth function with $F(0)=F(\pi)=0$. Prove that

$$\int_o^{\pi} \dot{F}^2 dt \ge \int_0^{\pi} F^2 dt$$

and equality holds if and only if there exists a real number A such that $F(t) = A\sin(t)$ for all $t \in [0, \pi]$.

- 3. Prove that the sphere of radius r > 0 around a point $v \in \mathbb{R}^3$ is a regular surface.
- **4.** Define normal curvature of a curve lying on a regular surface S in \mathbb{R}^3 . Prove that all curves lying on S and having the same tangent line at a point of S have the same normal curvature at that point.
- **5.** Define Christoffel symbols of a parametric patch of a regular surface S in \mathbb{R}^3 . Prove that they are invariant under local isometries.
- 6. Define covariant differentiation of a vector field on a regular patch U of a smooth surface S. Prove that if S is a plane in \mathbb{R}^3 , then covariant differentiation agrees with the usual directional derivative in \mathbb{R}^2 .